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The method previously proposed by the author for solution of nonlinear heat-conduction prob- 
lems is extended to the case in which there is an arbitrary relationship between the thermal 
conductivity and the temperature. The possibility of using the method to solve nonsteady- 
state problems is considered. 

The development of a method for solving nonlinear heat-conduction problems is a current problem of 
great interest; among other approaches, analog-computer techniques have been enlisted [I]. 

Nonlinear problems have been solved with the aid of structural models [2], static integrators [3], con- 
tinuous-media models [4], as well as resistance networks [5]. 

Without analyzing the analog methods in detail, we note that they are often very cumbersome, re- 
quiring the use of successive approximations and readjustment of model components. 

A new method was proposed in [6] for simulation of nonlinear steady-state heat-conduction problems; 
it was later called the method of nonlinear resistances. With this approach, a Schneider substitution [7] is 
used to reduce the nonlinear equation for steady-state heat conduction to a Laplace equation, while the 
boundary conditions (for the third boundary-value problem) becomes nonlinear. Next, departing from the 
traditional method of simulating the thermal resistance on the boundary by means of ordinary resistors, 
the author proceeded in a very logical way to simulate the thermal nonlinearity by means of an electrical 
nonlinearity, using elementary nonlinear resistors (incandescent bulbs, current regulators, etc.). With 
this approach, the method is solved in one pass, with no need for successive approximations or lineariza- 
tion of the boundary conditions, as is necessary when other methods are employed. Moreover, it becomes 
possible to use simple analog devices to solve nonlinear problems: networks of fixed resistors and models 
constructed from electrically conducting paper. 

The method of nonlinear resistances does have a substantial drawback: it invotves the use of the 
Schneider transformation which yields satisfactory results only when there is a linear relationship between 
the thermal-conductivity coefficient and the temperature. Nonlinearities that occur for a more complex 
A = f(t) relationship, and requiring other transformations, cannot be simulated by means of nonlinear ele- 
ments. Although most of the materials employed in the construction of machines have a A = f(t) charac- 
teristic that is nearly linear, nonetheless if the method is to have a high degree of universality, it must be 
extended to the case in which there is an arbitrary relationship between the thermal conductivity and the 
temperature. 

A great help in the effort to solve this problem was the utilization of electron tubes as nonlinear ele- 
ments, as proposed by the author, together with V. E. Prokof'ev, and a specially constructed device for 
adjusting the characteristics of the nonlinear resistors, which permitted very rapid and accurate fitting of 
the tube plate characteristic to the curve reflecting the specified nonlinearity. Investigation of the way in 
which various parameters affect the tube plate characteristic has shown that by changing the bias voltage 
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Fig. 1. Rea l iza t ionofnonl inearboundary  
conditions of the third kind by means of 
an e lec t r ic  model:  NR) nonlinear r e s i s -  
tor;  CR) current  regulator .  

on the gr ids ,  and by varying the res is tance  connected in p a r -  
allel with the tube, it is possible to obtain almost any p a r a -  
bolic plate charac te r i s t i c ,  with various exponents and coeff i -  
cients for the parabola.  

Using an example in which the thermal  conductivity is 
a l inear function of the tempera ture ,  we f i rs t  show that to 
solve nonlinear heat-conduction problems by means of the 
nonl inear - res i s tance  method we can avoid the Schneider sub-  
stitution by using the Kirchhoff t ransformat ion,  which is 
more  universal ,  and is suitable for an a rb i t r a ry  )t = f(t) r e -  
lationship. 

The nonlinear equation of s teady-s ta te  heat conduction 
(we consider  the two-dimensional  case for simplicity) 

o o ~ , , ,  
Ox ~ k oy 

can be reduced with the aid of the expression 
t 

0 --= .[ ~, (t) dt (2) 
0 

to the Laplace equation 

v20 = 0,  (3) 

as has been shown previously,  while the nonlinear boundary condition of the third kind (the Diriehlet and 
Neumann problems are  of no par t icu lar  interest ,  since the fur ther  solution is the same as that for l inear 
problems) 

e (t - -  tf) = - -  x (t) ot 
0-~- (4) 

can be t ransformed,  when there is a l inear relat ionship between the thermal  conductivity and the t empera -  
ture, 

~. = a + bt, (s) 
to the form 

[ a  (a_2 2 )  0,.~ ] O0 
c, - - T  + + T o  - - t ~  ~ On 

(6) 

We let 

and then (6) is wri t ten as 

a 0,5 t I + - ~  = 0 ,  =cons t  

a 2 

- -  - -  = 0  o =Const, 
2b 

a [ ( 0 - O o )  ~ -0~ - 

(7) 

oo (s) 
On 

or,  after  going over  to f ini te-difference form,  

a [(OM - -  Oo)~ - -  O ~ = - -  I (O~ - -  ON), (9) 

where 8 M and O N are ,  respect ively ,  the values of the function 0 at the boundary point M and at the nearby 
in ter ior  point N, one step away. 

If the boundary condition of the third kind is real ized by an e lec t r ic  model,  as shown in Fig.  1, we can 
wri te  the following Kirchhoff law for the boundary point M: 

I ,  - .  A (VM - -  VoP - -  1 (VM - -  VN) = O, (10) 
r 
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w h e r e  I .  is the c u r r e n t  s u p p l i e d  to the b o u n d a r y  poin t  by  the c u r r e n t  r e g u l a t o r ;  VM, V N a r e  the p o t e n t i a l s  
at  M and N; A,  n a r e  the c o e f f i c i e n t  and exponen t  of the tube p l a t e  c h a r a c t e r i s t i c ;  V 0 is  the po t en t i a l  a p -  
p l i e d  to the ca thode .  

It shou ld  be  r e m e m b e r e d  that  tube p l a t e  c h a r a c t e r i s t i c s  f o r m  a f a m i l y  of c u r v e s  of the type  

I = A U  '~. (i1) 

I n v e s t i g a t i o n  of tube c h a r a c t e r i s t i c s  shows  that  such  c u r v e s  a r e  c h a r a c t e r i s t i c  of m a n y  t r i o d e s ,  b e a m - p o w e r  
t e t r o d e s ,  p e n t o d e s ,  and h e p t o d e s .  

We m o d i f y  (10) so  that  i t  t akes  a f o r m  s i m i l a r  to that  of (9). To do t h i s ,  we r e p r e s e n t  the funct ion  I .  
a s  

t ,  = AVe! .  (12) 

A f t e r  th is  we r e w r i t e  (10) as  

Vo) - -  V, j = - -  - -  (V~t - -  VN). (13) 
r 

It is  e a s y  to s e e  that  (9) and (13) wi l l  be  i d e n t i c a l  if the exponent  n equa l s  0.5 and if the fo l lowing  condi t ion  
is  s a t i s f i e d  [6]: 

ArO,O.s _ 1. 
~hvO~ (14) 

Thus to r e a l i z e  the b o u n d a r y  condi t ion  (9) by  m e a n s  of an e l e c t r i c  m o d e l  we m u s t  do the fo l lowing:  
s p e c i f y  a p a r t i c u l a r  va lue  of I . ,  u s e  the f o r m u l a  

A2 = a h t ,  
ro~, ~ , ( i s )  

which fo l lows  f r o m  (14) and (19.), to f ind  the c o e f f i e i e n t  A, and s e l e c t  the tube b i a s e s  and the va lue  of the 
p a r a l l e l  r e s i s t o r  so  that  the tube c h a r a c t e r i s t i c  c o i n c i d e s  wi th  the r e l a t i o n s h i p  I = AU ~ In this  e a s e ,  the 
tube ca thode  is not  at  z e r o  p o t e n t i a l ,  as  m u s t  be  the c a s e  when the S c h n e i d e r  s u b s t i t u t i o n  is u s e d ,  and the 
r e l a t i o n s h i p  I = AV ~ is  s i m u l a t e d ;  i n s t e a d  we use  the p o t e n t i a l  V0, found f r o m  the f o r m u l a  

V o = me 0 o, (16) 

w h e r e  m0  is a c o n v e r s i o n  f a c t o r  that  p e r m i t s  us to go f r o m  0 to V; it  is  found as  

V, 
m 0  - ( 1 7 )  

0. 

In th is  e x p r e s s i o n ,  0. is known f r o m  the cond i t ions  of the p r o b l e m ,  whi le  V,  is  d e t e r m i n e d  f r o m  (12) on the 
b a s i s  of the s p e c i f i e d  I .  and the va lue  found f o r  A. I n c i d e n t a l l y ,  this  c o e f f i c i e n t  m 0 is a l so  n e e d e d  to i n t e r -  
p r e t  the r e s u l t s  o b t a i n e d  f r o m  the m o d e l .  

S ince  00 can be  e i t h e r  p o s i t i v e  o r  n e g a t i v e  in a c c o r d a n c e  with (7), the p o t e n t i a l  V 0 m u s t  be  s u p p l i e d  
with the a p p r o p r i a t e  s ign .  

Going o v e r  to the g e n e r a l  c a s e  in which  t h e r e  is  an a r b i t r a r y  r e l a t i o n s h i p  b e t w e e n  the t h e r m a l  c o n -  
duc t i v i t y  and the t e m p e r a t u r e ,  and m a k i n g  use  of the s a m e  t r a n s f o r m a t i o n  (2), we r e p r e s e n t  (4) as  

00 
aT  (0) - -  at r = On ' (t8) 

w h e r e  T(0) is  a func t ion  that  is  the i n v e r s e  of 0(t), and is d e t e r m i n e d  by  i n v e r t i n g  (2). 

The  r igh t  s i de  of (18), r e p r e s e n t e d  in f i n i t e - d i f f e r e n c e  f o r m  as  was  done in (9), is s i m u l a t e d  d i r e c t l y  
by  m e a n s  of the n e t w o r k .  The  cons t an t  t e r m  on the r i g h t  s i d e ,  r e p r e s e n t i n g  the p r o d u c t  of the h e a t - t r a n s f e r  
c o e f f i c i e n t  ce and the t e m p e r a t u r e  tf can  be  s i m u l a t e d ,  as  shown tn F ig .  1, by  c u r r e n t  s u p p l i e d  f r o m  a r e g u -  
l a t o r .  As fo r  the f i r s t  (non l inea r )  t e r m  on the lef t  s i de  of (18), if the func t ion  T(0) can  be r e p r e s e n t e d  in 
f in i t e  f o r m  a s ,  f o r  e x a m p l e ,  in the p r e s e n t  c a s e ,  it  can  be  s i m u l a t e d ,  i t  is  only  n e c e s s a r y  to a d j u s t  the tube 
c h a r a c t e r i s t i c  to a c u r v e  w h o s e  n a t u r e  depends  on the f o r m  of the funct ion T(0).  
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F i g .  2. I n v e r s i o n  of funct ion  0 = S ) t ( t )dt  fo r  type  I~I-612 
a u s t e n i t i c  s t e e l  (A 4.42 o = + 1.94 �9 10-2T).  

If the func t ion  0 = O(t) is  such  that  i t  is  not  e a s y  to ob ta in  the i n v e r s e  func t ion  in f in i te  f o r m ,  r e p r e -  
s e n t i n g  0 = O(t) as  the  s e r i e s  

0 = a t  + b l  2 + ct 8 + d P  + . . . ,  (19) 

we can  ob t a in  the i n v e r t e d  fo rm 

w h e r e  

l - -  T ( O ) = a ' O + b ' O  z + c ' O  a + d ' O  t-{ . . . .  , (20) 

1 b 1 
a ' - -  , b ' = - - - - - ,  c ' - ~ - - ( 2 b  ~ - a c ) ,  

a a 3 a 5 

1 
d'  = ( 5 a b c  - -  a2d - -  5b'~). 

a 7 

It m a y  p r o v e  s t i l l  s i m p l e r  to i n v e r t  the funct ion  g r a p h i c a l l y ,  i . e . ,  hav ing  the g raph  of 0 = 0(t), to c o n -  
s t r u c t  the r e l a t i o n s h i p  T = T(0) (F ig .  2). To f in i sh  so lu t i on  of the p r o b l e m ,  we s i m u l a t e  the p r o d u c t  of the 
h e a t - t r a n s f e r  c o e f f i c i e n t  by  the r e s u l t i n g  func t ion  T = T(0) .  Th i s  can be  done if the n o n l i n e a r  e l e c t r i c a l  
r e s i s t a n c e  has  the c h a r a c t e r i s t i c  

I ~ aT  (0). (21) 

As we have  a l r e a d y  no ted ,  a l m o s t  any r e l a t i o n s h i p  b e t w e e n  the c u r r e n t  th rough  the n o n l i n e a r  r e s i s t o r  
and  the vo l t age  a c r o s s  i t  can  be  ob t a ined  by  a p p r o p r i a t e  v a r i a t i o n  of the b i a s  v o l t a g e s  on the tube g r i d s  and 
of the r e s i s t o r  c o n n e c t e d  in p a r a l l e l  with the tube .  

Equa t ion  (10) can be  w r i t t e n  in the s i m p l e r  f o r m  

4 - INR = ! (V~ - -  V~) (22) 
r 

H e r e I N R  is  the c u r r e n t  f lowing  f r o m  the b o u n d a r y  po in t  th rough  the n o n l i n e a r  r e s i s t o r .  

If we i n t r o d u c e  the s c a l e  f a c t o r s  

a t  r 0 (23) 
m~ = - - [ -  , m r =  - - ~  , m v ~ -  V 

then the equa t ion  

1 (0 M _ ON ) (24) a T  M ( 0 )  - -  a t  i = - -  - s  

wi l l  be  the f i n i t e - d i f f e r e n c e  i n t e r p r e t a t i o n  of (18), and can  be  r e w r i t t e n  as  

1 
m~ (I  1 - -  lz)  = - -  m , m  v - -  ( V ~  - -  VN) ,  

r 

(2s) 

w h e r e  

m~I l = a T  M (0), 

m i I  2 = a t  1. 
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If the currents I, and INR (Fig. I) are so specified that 

I ,  = Iz, IN~-  I 1, (26) 

then (22) and (25) will be identical provided the following condition is satisfied: 

mrmv -- 1. (27) 
m i 

Now we need only adjust the nonlinear res i s tance  in appropriate fashion. 

Adjustment of the nonlinear res i s tance  is s implest  if we employ the instrument  mentioned above to 
fit the charac te r i s t i cs  of the nonlinear e lements .  The approach used with this device, whereby the plate 
charac te r i s t i c  is fitted to a re fe rence  parabola on the screen  of an osc i l loscope ,cannotbe  considered to be 
universal .  This is par t icu lar ly  true when the T(0) cannot be represented  analytically.  In such case,  the 
construct ion of the reference  parabola is a problem in its own right, whose solution is often far  f rom sire-  
ple. 

Thus in solving problems involving a more  complicated relat ionship between thermal conductivity 
and tempera ture  than a linear dependence, the non l inear - res i s t ance  charac te r i s t i c  should not be fitted to a 
re fe rence  parabola,  but direct ly to the T = T(0) relat ionship,  obtained by one of the methods discussed 
above. The fact is that even the most  superf icial  analysis of (24)-(26) shows that the relat ionship between 
the cur rent  through the nonlinear r e s i s t o r  and the voltage across  it only differs f rom T = T(0) in a constant 
factor .  As a consequence, the plate cha rac te r i s t i c  of the nonlinear element will only differ by a scale fac-  
tor f rom the inverted function T = T(0), and provision can be made for this by appropriate  choice of the 
osci l loscope gains. 

The cr i ter ia l  relat ionship (27) and Eqs. (23) are  used to determine the pa ramete r s  of the model. To 
conclude, we felt that the method discussed can be extended successful ly  to nonsteady-s ta te  nonlinear hea t -  
conduction problems.  The sole difference lies in the fact that during solution of the problem, the cha r ac -  
ter is t ics  of the nonlinear element change in time. This is done by varying the bias on the tube grid in ac-  
cordance with a prede te rmined  law, which is rea l ized by means of channels available in the funct ion-gene-  
ra to r  and boundary-condit ion elements available on modern analog computers .  

N O T A T I O N  

t is the tempera ture  of the body; 
tf is the ambient tempera ture ;  

is the thermal-conductivity coefficient; 
is the heat- transfer  coefficient; 

h is the net spacing; 
I is the current ;  
V is the potential; 
U is the potential difference;  
r is the res i s tance  corresponding to the net spacing; 
m is a scale factor ;  
A is a coefficient of proport ionali ty;  
n is the exponent; 
NR is the nonlinear r e s i s to r ;  
CR is the current  regulator .  
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