GENERALIZATION OF THE NONLINEAR-RESISTANCE
METHOD TO AN ARBITRARY THERMAL-CONDUCTIVITY
~ TEMPERATURE RELATIONSHIP FOR STEADY-STATE
HEAT-CONDUCTION PROBLEMS

Yu. M. Matsevityi UDC 536.2.01

The method previously proposed by the author for solution of nonlinear heat-conduction prob-
lems is extended to the case in which there is an arbitrary relationship between the thermal
conductivity and the temperature. The possibility of using the method to solve nonsteady-
state problems is considered.

The development of a method for solving nonlinear heat-conduction problems is a current problem of
great interest; among other approaches, analog~-computer techniques have been enlisted [1].

Nonlinear problems have been solved with the aid of structural models [2], static integrators [3], con~
tinuous-media models [4], as well as resistance networks [5].

Without analyzing the analog methods in detail, we note that they are often very cumbersome, re-
quiring the use of successive approximations and readjustment of model components.

A new method was proposed in [6] for simulation of nonlinear steady-state heat-conduction problems;
it was later called the method of nonlinear resistances. With this approach, a Schneider substitution {7] is
used to reduce the nonlinear equation for steady-state heat conduction to a Laplace equation, while the
boundary conditions (for the third boundary-value problem) becomes nonlinear. Next, departing from the
traditional method of simulating the thermal resistance on the boundary by means of ordinary resistors,
the author proceeded in a very logical way to simulate the thermal nonlinearity by means of an electrical
nonlinearity, using elementary nonlinear resistors (incandescent bulbs, current regulators, etc.). With
this approach, the method is solved in one pass, with no need for successive approximations or lineariza~
tion of the boundary conditions, as is necessary when other methods are employed. Moreover, it becomes
possible to use simple analog devices to solve nonlinear problems: networks of fixed resistors and models
constructed from electrically conducting paper.

The method of nonlinear resistances does have a substantial drawback: it involves the use of the
Schneider transformation which yields satisfactory results only when there is a linear relationship between
the thermal-conductivity coefficient and the temperature. Nonlinearities that occur for a more complex
A = f(t) relationship, and requiring other transformations, cannot be simulated by means of nonlinear ele-
ments. Although most of the materials employed in the construction of machines have a A = f(t) charac-
teristic that is nearly linear, nonetheless if the method is to have a high degree of universality, it must be

extended to the case in which there is an arbitrary relationship between the thermal conductivity and the
temperature.

A great help in the effort to solve this problem was the utilization of electron tubes as nonlinear ele-
ments, as proposed by the author, together with V. E. Prokof'ev, and a specially constructed device for
adjusting the characteristics of the nonlinear resistorg, which permitted very rapid and accurate fitting of
the tube plate characteristic to the curve reflecting the specified nonlinearity., Investigation of the way in
which various parameters affect the tube plate characteristic has shown that by changing the bias voltage
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on the grids, and by varying the resistance connected in par-
allel with the tube, it is possible to obtain almost any para-
bolic plate characteristic, with various exponents and coeffi-
cients for the parabola,

NR

Using an example in which the thermal conductivity is
r N a linear function of the temperature, we first show that to
solve nonlinear heat-conduction problems by means of the
nonlinear-resistance method we can avoid the Schneider sub~
stitution by using the Kirchhoff transformation, which is
more universal, and is suitable for an arbitrary A =1f(t) re-
lationship.

CR

The nonlinear equation of steady-state heat conduction
(we consider the two-dimensional case for simplicity)

Fig. 1. Realizationofnonlinear boundary

conditions of the third kind by means of 2 [A(t)ﬁ] + 9 [h(t)-@—] =0 (1)
an electric model: NR) nonlinear resis- ox ox 0y oy
tor; CR) current regulator. can be reduced with the aid of the expression
, ‘
= (A (2)

i
to the Laplace equation
v =0, (3)

as has been shown previously, while the nonlinear boundary condition of the third kind (the Dirichlet and
Neumann problems are of no particular interest, since the further solution is the same as that for linear
problems)
ot
a(f —1t;) =—A({l) — 4
(t—1) (t) n (4)

can be transformed, when there is a linear relationship between the thermal conductivity and the tempera-
ture, ’

A=a+ bi, (5)
to the form
a a® 2 \05 00 6
e LA R A {6)
o=+ (F+5) e
We let
t +% =02 = const,
7
2
B 6, = const,
2b
and then (6) is written as
a6 — 8 —6%] = — 2 ®
on
or, after going over to finite-difference form,
1
a [(0m —8)"° —6)°] =— " Oy —9x), ©)

where 6y and 6y are, respectively, the values of the function 6 at the boundary point M and at the nearby
interior point N, one step away.

If the boundary condition of the third kind is realized by an electric model, as shown in Fig. 1, we can
write the following Kirchhoff law for the boundary point M:

I, —.A(VM—VO)H—%(VM—VN) —o, (10)
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where I, is the current supplied to the boundary point by the current regulator; Vy, Vy are the potentials
at M and N; A, n are the coefficient and exponent of the tube plate characteristic; Vjis the potential ap-
plied to the cathode.

It should be remembered that tube plate characteristics form a family of curves of the type
I =AU (11)

Tnvestigation of tube characteristics shows that such curves are characteristic of many triodes, beam-~power
tetrodes, pentodes, and heptodes.

We modify (10) so that it takes a form similar to that of (9). To do this, we represent the function I
as
Ly =AV]. (12)

After this we rewrite (10) as

: ) 1
Al(Vu—Vo" =Vl = - (Var— V). (13)

It is easy to see that (9) and (13) will be identical if the exponent n equals 0.5 and if the following condition
is satisfied [6]:
Ar@{oﬁ'5
ahV??

Thus to realize the boundary condition (9) by means of an electric mode! we must do the following:
specify a particular value of I, use the formula

=L (14)

ahl,
A = _rBO—’E” (15)

which follows from (14) and (12), to find the coefficient A, and select the tube biases and the value of the
parallel resistor so that the tube characteristic coincides with the relationship I = AU%®. In this case, the
tube cathode is not at zero potential, as must be the case when the Schneider substitution is used, and the
relationship I = AV"® is simulated; instead we use the potential Vg, found from the formula

Vo= mg 8y, (16)
where mg is a conversion factor that permits us to go from 6 to V; it is found as
Ve
Mg ——— .
0 0, {(17)

In this expression, 64 is known from the conditions of the problem, while V, is determined from (12) on the
basis of the specified I, and the value found for A. Incidentally, this coefficient my is also needed to inter-
pret the results obtained from the model.

Since ¢, can be either positive or negative in accordance with (7), the potential V, must be supplied
with the appropriate sign.

Going over to the general case in which there is an arbitrary relationship between the thermal con-
ductivity and the temperature, and making use of the same transformation (2), we represent (4) as

aT(e)—atf=-——g%, (18)

where T(6) is a function that is the inverse of 6(t), and is determined by inverting (2).

The right side of (18), represented in finite-difference form as was done in (9), is simulated directly
by means of the network. The constant term on the right gide, representing the product of the heat-transfer
coefficient o and the temperature ty can be simulated, as shown in Fig. 1, by current supplied from a regu-
lator. As for the first (nonlinear) term on the left side of (18), if the function T(8) can be represented in
finite form as, for example, in the present case, it can be simulated, it is only necessary to adjust the tube
characteristic to a curve whose nature depends on the form of the function T(8).
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Fig. 2. Inversion of function 6 = (J)" A(t)dt for type KI-612
austenitic steel (A = 4.42 + 1.94-1072T).

If the function 6 = @(t) is such that it is not easy to obtain the inverse function in finite form, repre-
senting 6 = 9(t) as the series

O =af4 b +c® 4 di* + .-, (19)
we can obtain the inverted form
t=T@O)=a0+ b0+ 0+ do* + ..., (20)
where . 5 .
Q' =—, b= —, ¢ =— (20" —a0),
a a® a®

& = 2 (Babe— ard —567),
a7

It may prove still simpler to invert the function graphically, i.e., having the graph of 8 = 9(t), to con-
gtruct the relationship T = T(0) (Fig. 2). To finish solution of the problem, we simulate the product of the
heat-transfer coefficient by the resulting function T = T(6). This can be done if the nonlinear electrical
resistance has the characteristic

I ~aT(8). 21)

As we have already noted, almost any relationship between the current through the nonlinear resistor
and the voltage across it can be obtained by appropriate variation of the bias voltages on the tube grids and
of the resistor connected in parallel with the tube.

Equation (10) can be written in the simpler form

1 22
L=l - V=V, 22)
Herelyp isthe current flowing from the boundary point through the nonlinear resistor.
If we introduce the scale factors
m= m=l m =2, (23)
I h 1%
then the equation
1
aT,, (8) —at; = - (0, —8,) (24)
will be the finite-difference interpretation of (18), and can be rewritten as
Mol — 1) = — mm, = (V, —V,), (25)
r

where

mly =aT, (6),
milz == (ltf.
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If the currents I, and Iy (Fig. 1) are so specified that
[* = 12’ ]NR: [1, (26)

then (22) and (25) will be identical provided the following condition is satisfied:
m,m,

m;

=1 27)

Now we need only adjust the nonlinear resistance in appropriate fashion.

Adjustment of the nonlinear resistance is simplest if we employ the instrument mentioned above to
{fit the characteristics of the nonlinear elements. The approach used with this device, whereby the plate
characteristic is fitted to a reference parabola on the screen of an oscilloscope, cannot be considered to be
universal. This is particularly true when the T(6) cannot be represented analytically. In such case, the
construction of the reference parabola is a problem in its own right, whose solution is often far from sim-
ple.

Thus in solving problems involving a more complicated relationship between thermal conductivity
and temperature than a linear dependence, the nonlinear-resistance characteristic should not be fitted to a
reference parabola, but directly to the T = T(68) relationship, obtained by one of the methods discussed
above. The fact is that even the most superficial analysis of (24)~(26) shows that the relationship between
the current through the nonlinear resistor and the voltage across it only differs from T = T(8) in a constant
factor. As a consequence, the plate characteristic of the nonlinear element will only differ by a scale fac-
tor from the inverted function T = T(6), and provision can be made for this by appropriate choice of the
oscilloscope gains,

The criterial relationship (27) and Egs. (23) are used to determine the parameters of the model. To
conclude, we felt that the method discussed can be extended successfully to nonsteady-state nounlinear heat-
conduction problems. The sole difference lies in the fact that during soluticn of the problem, the charac~
teristics of the nonlinear element change in time. This is done by varying the bias on the tube grid in ac-
cordance with a predetermined law, which is realized by means of channels available in the function-gene-
rator and boundary-condition elements available on modern analog computers.

NOTATION

o

is the temperature of the body;

is the ambient temperature;

is the thermal-conductivity coefficient;
is the heat-transfer coefficient;

is the net spacing;

is the current;

is the potential;

is the potential difference;

is the resistance corresponding to the net spacing;
is a scale factor;

is a coefficient of proportionality;

is the exponent;

is the nonlinear resistor;

is the current regulator.
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